
LA  MECCANICA  QUANTISTICA  COMPIE CENT ' ANNI

INTRODUZIONE.

All'inizio del '900 la fisica si trova a dover giustificare alcune evidenze sperimentali non 
spiegabili con le teorie classiche esistenti. Einstein attraveso la Relatività Ristretta (RS) e 
Generale (RG) risolve alcune discrepanze altre troveranno una spiegazione attraverso la 
Meccanica Quantistica (MQ).
La MQ segue una logica che spesso esula dal senso cumune perciò a volte la sua 
comprensione risuta difficile. Tocca accettare le sue previsioni senza necessariamente 
capirla a fondo.
Molti fisici non l'hanno accettata in parte o in toto e ricercano ancora teorie alternative.
Facciamo alcuni esempi.

EINSTEIN: 
  L'idea che un elettrone possa liberamente scegliere l'istante e la direzione in cui spiccare il 
salto è per me intollerabile. Se fosse cosi' preferirei fare il ciabbattino o il biscazziere, 
piuttosto che il fisico.  In (Einstein & Born,1973)

Più la teoria dei quanti ha successo ,più sembra una sciocchezza. (Lettera ad Heinrich 
Zangger,20 mggio 1912)

E' indubitabile ,a mio parere, che questa teoria contenga un frammento della verità ultima. 
(Einstein A., 1931)

Situazione inaccettabile da tutti coloro che non sono “disponibili ad abbandonare senza 
combattere una causalità rigorosa”. 

BOHR :
  Chi non rimane sconvolto ,quando si imbatte per la prima volta nella teoria quantistica , 
non può assolutamente averla compresa. Cit.in (Kumar,2012,p.9)

SCHRODINGER :
 Non mi piace e mi spiace averci avuto a che fare.

Se questi dannati salti quantici dovessero esistere , rimpiangerò di essermi occupato di 
meccanica quantistica. In (Heisemberg,Fisica e oltre,1984).

HEISEMBERG:
 Quanto più penso agli aspetti fisici della teoria di Schrodinger, tanto più repellenti li trovo.
Heisemberg a Pauli, 8 giugno 1926, in (Cassidy,1996,p.236).

FEYNMAN:
  Penso si possa tranquillamente affermare che nessuno capisce la meccanica quantistica. 
In (Kumar,2012,p.340).



  
Al di là di queste considerazioni, la MQ è la teoria più precisa che abbiamo. Per dare 
un'idea, la misura di una certa grandezza fisica che può venir misurata in laboratorio viene 
calcolata dalla teoria con un errore massimo relativo che è dell'ordine di 610-10 ,facendo 
riferimento alle distanze, di 0.6 mm su 1000 km!

1-  CRISI DELLA FISICA CLASSICA

  
  1.a.  SPETTRO DEL CORPO NERO         Max Planck  - 1900
         
La MQ nasce il 14 dicembre del 1900 quando Max Planck risolve il problema 
dell'emissione di energia da parte di un corpo nero. Il corpo nero può essere assimilato ad 
una scatola chiusa con le pareti poste ad una temperatura  T . Le cariche elettriche della 
parete si muoveranno a seguito dell' agitazione termica ed emetteranno in accordo con le 
leggi dell'elettromagnetismo, onde elettromagnetiche (EM) all'interno della cavità. A loro 
volta le onde EM trasferiranno energia alle pareti fino ad arrivare ad una condizione di 
equlibrio termico.Tale energia presente nella scatola segue la legge di Rayleigh-Jeans  1a), 
essa dipende dalla temperatura  T e dalla  frequenza  f dell'onda. Praticando un foro su 
una parete si può calcolare l'energia EM che esce dal foro ogni secondo per unità di 
superfice,l'intensità di radiazione. Eseguendo il calcolo su tutte le frequenze possibili si 
ottiene una curva come in fig. 1a  RJ.  L'intensità sarà proporzionale all'area sotto la curva 
che tende all'infinito e quindi l'intensità della luce emessa sarà infinita . .
(catastrofe ultravioletta) ) .Ciò non è vero!
Le prove sperimentali davano una una curva come quella che appare sempre in fig.1a SP.

Planck risolve il problema  ipotizzando che per ogni frequenza  f  l'energia fra radiazione 
(onde EM) e materia (pareti) deve essere scambiata per multipli interi di una quantità 
costante  E = h f, detto quanto di energia  , h = 6,63 10 - 34  J s .
Si può inoltre dimostrare che la legge di RJ e quella di Planck 1b) coincidono per basse 
frequenze.(vedi appendice A1).  Planck costruisce la sua legge nel tentativo di avere una 
formula matematica che fosse in accordo con i dati sperimentali. Perchè funziona? La 
meccanica statistica ci spiega che i quanti con alta frequenza partecipano di rado allo 
scambio di energia ,quindi per basse frequenze l'emissione avviene facilmente (legge RJ) 
mentre per alte frequenze ha meno probabilità di avvenire e tende a zero. 

  1a.)       E(f,T)  =  kTf ² / c²        

                  E(f,T)  =     hf ³        1
   1b)                             c²     e hf / kT  -  1
 



   fig.1a

 1.b.   EFFETTO   FOTOELETTRICO      Albert  Einstein  -  1905

In estrema sintesi Eintein risolve il problema dell'effetto fotoelettrico dimostrando che la 
luce può strappare elettroni da un metallo incidendo su di esso solo se la sua frequenza  f è 
maggiore di una  frequenza di soglia o frequenza di estrazione  f0.  , tutto ciò in accordo con 
i dati sperimentali.
La teoria classica invece non era in grado di spiegare tali dati in quanto ammetteva che la 
luce ,onde EM, potesse investendo il metallo, far oscillare gli elettroni fino a farli 
uscire,quindi spiegava il fenomeno dicendo che l'energia cinetica  K degli elettroni emessi 
dipendeva dall'intensità della radiazione I  proporzionale al quadrato del campo elettrico E.

Secondo Eistein invece la luce è fatta di  fotoni  di energia  E=hf .I  singoli fotoni 
colpiscono gli elettroni e sono in grado di estrarli solo se possiedono una frequena  f > f0  , 
quindi definendo E il lavoro di estrazione l'energia cinetica  K degli elettroni estratti sarà

  K= hf -hf0.
E' poi evidente che all'aumentare dell'intensità della luce capace di estrarre aumenteranno 
anche gli elettroni estratti.

Einstein pone il problema della natura corpuscolare della luce!

Se la luce è quantizzata perchè non vediamo i singoli fotoni? Perchè non appaiono come 
singoli lampi di luce? Perchè l'energia di un fotone è troppo piccola. In 1 watt di luce  
“rossa” ci sono 3 1018   fotoni che colpiscono il nostro occhio in 1 s! Per questo non li 
vediamo singolarmente. Cioè N hf =1 J = 1 Ws,  quindi  N = 1/  6,63 10 - 34 450 10-12 che 
vale  3 1018.



1.c.       ATOMO     DI    BOHR       1913

Niels Bohr propone un modello planetario dell'atomo che mescola teoria classica,meccanica
ed elettromagnetismo , con la teoria dei quanti .Quantizza il momento angolare.
Egli pone alla base del suo atomo le seguenti considerazioni:

1) l'elettrone nel suo moto orbitale attono al nucleo possiede un momento angolare     
L = mvR  dove m è la sua mssa,v la velocità ed R il raggio dell'orbita. La 
quantizzazione porta a dire che L = n h/2π  cioè un multiplo di “accatagliato”.

     2) Quando un elettrone ruota su di un orbita quantizzata non emette radiazione E.M. 
Questo è in netto contrasto con la teoria dell'elettromagnetismo la quale afferma che 
una carica in accelerazione ( in questo caso centripeta) emette onde E.M.

     3) Un elettrone può emettere o assorbire energia solo passando da un livello energetico    
ad un altro emettendo o assorbendo un quanto di enrgia hf. Quindi ad esempio    
E2  -  E 1  =  hf

La teoria di Bohr è spesso contradditoria ma funziona! 
 

Inoltre la teoria rende ragione dello spettro E.M. che un atomo eccitato termicamente 
emette. Le lunghezze d'onda delle righe osservate sperimentalmente erano descritte da una 
formula trovata ne 1888 da Rydberg,Balmer:   

     1/λ = R (1/2²  -  1/n²)    con n= 3,4,5,...     R= e4  m / 8 ε 0
2 h3   

e carica elettrica  m massa dell'elettrone
R = 1,097 107   m-1    per l'atomo di idrogeno.
La teoria di Bohr descrive correttamente tali lunghezze d'onda e spiega la buona stabilità 
atomica .
Per una trattazione completa dell'atomo di Bohr si rimanda allappendice A2.

Spettro dell'atomo di idrogeno. Fig.1.c.



1.d.       LE   ONDE   DI    DE BROGLIE        1924

Nel 1924 Louis de Broglie nella tesi di dottorato propone una teoria  rivoluzionaria e cioè che ad 
ogni particella di massa  m è associata un onda e quindi una lunghezza d'onda  λ  collegata con la 
quantità di moto  mv  della stessa dalla relazione  :

 λ =h/mv.

Tale relazione completa l'aspetto corpuscolare delle onde andando d attibuire alla massa 
caratteristiche ondulatorie.

Inoltre essa giustifica perfettamente la quantizzazione del momento angolare di Bohr. Infatti  se 
consideriamo un onda  ( ad es, elettrone) che si muove su di una circonferenza chiusa per essere 
stazionaria, cioè con frequenza costante e lunghezza d'onda costante,  la circonferenza deve essere 
“coperta” da un numero intero di  lunghezze d'onda , altrimenti avremo una interferenza distruttiva 
tra le onde e la sua oscillazione andrebbe a zero. (fig. 1.d)

Quindi    2πR = nλ    ma poiché   λ =h/mv    allora  2πR = nh/mv   e quindi   mvR = nh/2π

che è la quantizzazione del momento angolare di Bohr!

Perchè questa relazione non viene utilizzata nel mondo macroscopico?

Perchè gli aspetti ondulatori della materia si manifestano quando gli oggetti materiali hanno 
dimensioni confrontabili con la lunghezza d'onda della luce. Se  la luce incontra una lente ,oggetto 
macroscopico, utizziamo l'ottica geometrica per descrivere ciò che succede (raggio di luce) ma se 
invece la luce incontra oggetti di dimensioni paragonabili con la sua lunghezza d'onda allora si 
hanno fenomeni di interferenza e di diffrazione e trattiamo la luce come onda (ottica fisica).

Facciamo un esempio : λ  associato ad un granello di polvere è circa pari a  10-16   m, mp=10-15 kg, 
vp=1cm/s  ;   me=10--30 kg, ve=2.8 10 6   m/s.

λ associato all'elettrone è 3,2 10 -10   m  ,che sono circa le dimensioni della circonferenza dell'atomo 
di idrogeno, ecco perche gli aspetti ondulatori della materia diventano importanti!         Fig.1.d.  



2 -  I   PRINCIPI   DELLA  MECCANICA   QUANTISTICA

Dal 1925 al 1927 la MQ  prende corpo a seguito degli studi di Schrodinger, Heisemberg e Dirac. 
Schrodinger  propone una formulazione che passa sotto il nome di meccanica ondulatoria, 
Heisemberg propone una formulazione chiamata delle matrici. I due formalismi in apparenza 
diversi vengono successivamente dimostrati equivalenti da Dirac. Utilizzeremo il formalismo di  
Schrodinger perchè più semplice, lavorando per semplicità lungo la variabile posizione  x.  Il cuore 
di tale formulazione sta nel concetto di funzione d'onda,il risultato di  misure fatte su di un sistema
sono operazioni algebriche eseguite su questa funzione la cui evoluzione è descritta dall'equazione 
di Schrodinger.

Confrontiamo ora i principi della fisica classica (FC) con quelli della meccanica quantistica (MQ )
cercando corrispondenze.

FC1)  Lo stato di un sistema è dato  assegnando posizione,tempo,massa, carica ,temperatura...tutte 
grandezze misurabili in linea di principio.

MQ1) Lo stato di un sistema è dato assegnando la sua funzione d'onda  ψ (x,t)  che contiene 
TUTTA l'informazione relativa al sistema.

FC2) Se si effettua una misura ad es. sulla posizione  ho un risultato deterministico  x  che mi dice 
dove fosse il sistema in quell'istante di tempo.

MQ2) Si ha che   P(x,t) =  |ψ (x,t)|²  rappresenta la densità di probabilità di trovare il sistema nella 
posizione  x  al tempo t.

FC3) L'evoluzione di un sistema  è fornito dalla seconda legge della dinamica F = m a.

MQ3) L'evoluzione temporale di un sistema si ha risolvendo l'equazione di Schrodinger

ih ψt= Hψ    dove   ψt  è la derivata parziale di ψ rispetto a t. H è l'hamiltoniano del sistema, cioè la 
somma dell'energia potenziale e cinetica.

FC4)  Le grandezze che descrivono la fisica possono essere misurate anche contemporaneamente e 
gli errori associati sono solo tipici della misura.

MQ4) Il principio di indeterminazione di Heisemberg.

Alcune coppie di grandezze non possono essere misurate contemporaneamente con una precisione 
arbitraria. Ovvero non possiedono contemporaneamente valori fisici definiti.

MQ4 bis) Due fermioni identici non possono stare nello stato individuale.



FC5) Le forze in gioco sono quelle gravitazionali ed elettromagnetiche.

MQ5) Le forze in gioco sono quelle elettromagnetiche, in seguito verranno inserite quelle deboli

(Fermi 1933) e forti (Gell-Mann 1953). Le forze gravitazionali non sono inserite inizialmente 
nella trattazione.

2.a.         LA   FUNZIONE  D'ONDA    

La funzione d'onda  ψ (x,t)  descrive lo stato di un sistema (ad es. particelle) . Essa è complessa 
cioè   ψ (x,t)  =  ψ (x,t) re  +  i ψ (x,t) imm   dove  i è l'unità immaginaria tale che   i² = -1 .

La necessità  che sia complessa nasce dal fatto che il suo modulo quadro ,che come vedremo 
rappresenta una probabilità sia positivo.  Inoltre  la sua complessità si adatta all' equazione di 
Schrodinger che ha una parte immaginaria . La parte immaginaria  nasce dalla necessità che essa ha 
di descrivere un comportamento ondulatorio unito al fatto che l'integrale della probabilità di cui 
sopra deve essere ugale ad 1.

La funzione d'onda contiene tutta l'informazione relativa al sistema . Non è direttamente 
misurabile è una funzione matematica. 

Secondo l'interpretazione di Born (1927)  il suo modulo quadro  |ψ (x,t)|²  è legato alla probabilità 
di trovare il sistema (particella) in un certo intervallo di spazio nell'istante di tempo t.

Legge di Born   : dP =  |ψ (x,t)|² dx è la probabilità di trovare la particella nell'intervallo  dx se 
si effettua su di essa una misura.

ψ (x,t) =  (ψ (x,t)² re    +  ψ (x,t) ²imm )½

Tale probabilità è non epistemica cioè non è duvuta ad una nostra mancanza di informazione 
ma è intrinseca al sistema . La probabilità classica è di contro epistemica cioè dovuta ad una 
nostra mancanza di informazione sui parametri di un sistema ( lancio di una moneta).

2.b.       L'EQUAZIONE   DI  SCHRODINGER

Se conosciamo la funzione d'onda in un certo istante  vorremmo sapere come evolverà nel tempo. Il
comportamento nello spazio e nel tempo di una particella di massa  m sarà descritto dall'equazione 
di Schrodinger. 

ih ψt (x,t) = Hψ (x,t)   dove   ψt  è la derivata parziale di ψ rispetto a t. H è l'hamiltoniano del 
sistema, cioè la somma dell'energia potenziale e cinetica. Essa sostituisce la seconda legge della 
dinamica di Newton.  Tale equazione è deterministica . (vedi A3)

Possiamo quindi calcolare il moto di una particella secondo la MQ.

Devo quindi scrivere  l'equazione di Schrodinger e risolverla in base alle condizioni iniziali poste. Il
procedimento è decisamente complicato, daremo quindi il risultato finale nel caso di una particella 
libera cioè non soggetta a forze. Per una trattazione  leggermente più completa si rimanda 
all'appendice A3.

La soluzione sarà una funzione  d'onda che può essere scritta come sommatoria di infinite onde 
ognuna con una lunghezza d'onda  λi = =  2π/ ki  e frequenza  fi ==  ωi /2π  dove  la velocità dell'onda è
v  =   λifi .

 ψ (x,t)  =  Σ Ai  cos (ki x  - ωi t) 



Il risultato di tale somma è il ” cosiddetto”  pacchetto d'onde  mostrato in fig. 2.b.  In realtà la 
somma sopra espressa è un integrale su k e l'ampiezza dell'onda  Ai  è una gaussiana che inviluppa 
le onde ,l'onda risultante quindi non è più un onda piana che si estende all'infinito ma risulta 
localizzata nello spazio. Analogamente è limitata nello spazio la relativa probabilità P(x).         

fig.2.b. 

La probabilità in figura è riferita allo spazio e non lungo x. Il pacchetto d'onda rappresenta quindi la
particella. Come evolve nel tempo tale pacchetto e la relativa probabilità? In pratica come varia la 
localizzazione della particella lungo x nel tempo? Poichè la velocità di gruppo delle onde materiali 
dipende da k che è legato a λ  il pacchetto formato da onde di  λ diversi tende a disperdersi cioè ad 
allargarsi nella direzione x come pure la probabilità P(x). La probabilità inoltre oltre ad allargarsi 
nel tempo si abbassa in modo tale che l'area sottesa dalla campana sia sempre  1.  vedi appendice 
A3.

Supponiamo ora di voler misurare ad un certo istante  t  una grandezza fisica relativa alla particella 
ad esempio la posizione  x. Bohr ed  Heisemberg  proposero nel 1927 la seguente interpretazione 
della MQ ,detta  interpretazione di Copenaghen.  Se eseguiamo una misura sulla particella  per 
determinarne la posizione allora la funzione d'onda  “collassa” intorno al risultato della misura e di 
conseguenza cambia forma anche la relativa probabilità, diventa cioè estremamente stretta al punto 
tale che la posizione è quasi certa. L'equazione di Schrodiger applicata a questa nuova condizione 
iniziale descriverà l'evoluzione del sistema. Di tutti i possibili risultati prima della misura se ne 
verifica uno solo, tale  ψ (x,t) è una “delta”  di Dirac uguale a ∞ per x=x0 e 0 per x≠x0.

 Ciò che causa il ” collasso” è una qualunque interazione del mondo esterno con il sistema. 
Può essere dovuta ad esempio ad un fotone che colpisce la particella ed è indipendente dal 
fatto che ci sia qualcuno che osserva il risultato della misura!

L'equazione di Schrodinger è lineare in quanto la   ψ (x,t)  compare alla prima potenza ,ciò vuol 
dire che se esistono due soluzioni ψ1 (x,t) e ψ 2(x,t), allora potrà esistere una soluzione che è 
combinazione lineare delle due  cioè:   ψ (x,t)  =  aψ1 (x,t)  +  b ψ 2(x,t) con a e b tali che 

a² + b² = 1, con a e b complessi, a² e b² rappresentano le probabilità di avere gli stati ψ1 e ψ 2.

Come già detto in MQ la funzione d'onda  ψ (x,t) descrive completamente lo stato di un sistema e ci
da il massimo dell'informazione, quindi una qualunque previsione che volessimo fare sul risultato di
una misura è probabilistica.  La probabilità è intrinseca alla realtà. Probabilità non epistemica. 
Contro questa interpretazione combattè lungamente Einstein cercando la parte “mancante” della 
teoria. Secondo Einstei la realtà è inconoscibile (carenze sperimentali) ma definita. 



2.c.         IL   PRINCIPIO   DI   INDETERMINAZIONE   DI  HEISEMBERG

Tale principio è uno dei cardini della MQ ,in realtà Heisemberg nelle due versioni che fece nel 1927
e nel 1930  non usò mai il termine principio ma sempre quello di relazioni di indeterminazione o 
relazioni di inesattezza o imprecisione .  La versione più nota riguarda la coppia di grandezze 
posizione  x  e quantità di moto  p, dove p=mv.

Versione 1927:

Per ogni sistema fisico esistono alcune coppie di grandezze fisiche che non possono essere 
conosciute contemporaneamente con precisione arbitraria . Il prodotto delle relative incertezze 
dovrà essere sempre maggiore od uguale a    h/2π , nel caso della coppia x,p      Δx Δp ≥  h/2π.

Le coppie di grandezze in questione non sono scelte a caso ma sono grandezze coniugate 
(compaiono assieme nelle espressioni dell'energia).

Il significato fisico è il seguente:  se vogliamo determinare  la posizione della particella possiamo 
illuminarla. A questo punto anche un solo fotone trametterà ad essa la sua quantità di moto in modo 
casuale (processo da trattare con l'equazione di Schrodinger che da risultati casuali), quindi la 
particella avrà dopo la misura una quantità di moto diversa da quella precedente e quindi non 
potremo conoscere con precisione quella iniziale. Questa è la versione a disturbo dove è 
l'interazione dell'osservatore sul sistema che impedisce  la conoscenza dello stato del sistema che 
potrebbe essere definito.

Vediamo ora un'aplicazione concreta di tale principio. Consideriamo un granello di sabbia con una 
massa di  10 -15   kg. Se lo osserviamo con un potente microscopio con risoluzione di 10 -7  m allora 

 Δp=m Δv    quindi   Δv ≈ 10 -9   mm/s    estremamente piccola come incertezza! Per un elettrone 
che gira intorno al nucleo in un atomo di idrogeno alla velocità v  ≈  2 106   m/s  con un  Δv pari al 
10% di v  avremo una incertezza sulla posizione   Δx ≈ 5 10-10  m  che è 10 volte più grande del 
raggio di Bohr dell'elettrone nell'atomo di idrogeno!  Questo elettrone non si sa proprio dove sta!

Versione 1930:

Per ogni sistema fisico esistono coppie di grandezze fisiche che   non possiedono  
contemporaneamente valori arbitrariamente precisi .Il prodotto delle relative incertezze dovrà 
essere sempre maggiore od uguale a    h/2π , nel caso della coppia x,p      Δx Δp ≥  h/2π.

In cosa consiste la differenza tra i due principi?  Nel primo le incertezze nascevano 
dall'impossibilità di misurarle con alta precisione dovuta al  disturbo, nel secondo si dichiara che 
alcune grandezze non possiedono valori definiti indipendentemente dal fatto che vengano 
misurate o no. E' una questione di principio! E' una proprietà fondamentale della teoria 
ondulatoria. Una proprietà intrinseca della natura. In definitiva una funzione d'onda ben localizzata 
nello spazio (piccola  Δx) è molto diffusa in quantità di moto (grande  Δp). Questo si vede 
confrontando il modulo quadro della funzione d'onda  ψ (x,t)  con il modulo quadro di   Φ (p,t)
che rappresenta la traformata di Fourier di ψ (x,t). Se la prima è stretta attorno ad un valore, la     
seconda appare molto allargata. La trasformata di Fourier permette di passare attraverso un 



particolare integrale da una funzione all'altra e viceversa.

Inoltre un'onda è rappresentata da una funzione sinusoidale che si estende nello spazio all'infinito 
quindi è fortemente indeterminata nella posizione ,non è localizzata.  Essa è monocromatica ed ha 
quindi una ben determinata lunghezza d'onda λ e frequenza f, quindi non c'è indeterminazione 
nell'impulso che è legato alla lunghezza d'onda  per le leggi di De Broglie  p= h/ λ.  Poichè k= 2π/ λ
numero d'onda , p= h k/ 2π quindi Δp = Δk h/ 2π. La trasformata di Fourier peraltro stabilisce che 
Δk Δx ≈ 1 e quindi mettendo assieme le ultime due relazioni si ottiene   Δp Δx ≈ h / 2π che è la 
relazione di indeterminazione di Heisemberg.  

Di contro un'onda localizzata che è un pacchetto d'onda ha una forte indeterminazione 
nell'impulso ,legato a  λ, in quanto esso è la somma di infinite onde  diverse lunghezze d'onda 
diverse fra loro.

 Possiamo inoltre determinare un'altra relazione di indeterminazione  che lega l'energia ed il tempo. 
Poichè sempre per Fourier Δt Δf ≈ 1 e  ΔE =hΔf si ottiene con qualche calcolo   ΔE Δt ≈ h / 2π . 
Quindi questa relazione ci dice che per un tempo Δt puo' essere violato il principio di 
conservazione dell'energia. 

2.d.     NUMERI   QUANTICI    E   PRINCIPIO   DI  ESCLUSIONE   DI    PAULI 

 Nel 1923 Schrodinger formula il concetto di orbitale.  Le regioni di spazio intorno al nucleo 
atomico in cui il modulo quadro della funzione d'onda raggiunge i valori più alti vengono chiamate 
orbitali. Esso è una zona dove è probabile trovare l'elettrone. I numeri quantici  definiscono 
dimensione , forma e orientamento degli orbitali. I numeri quantici sono  tre : numero quantico 
principale, secondario e magnetico. Il numero quantico di spin descrive una proprietà 
dell'elettrone ed è paragonabile al senso di rotazione dell'elettrone attorno al proprio asse. Per 
l'elettrone che è un fermione posso avere i valori +1/2  e  -1/2   antiparalleli.

 Il numero quantico principale viene indicato con  n, assume valori interi ed è legato alla distanza
media degli elettroni dal nucleo. Rappresenta inoltre gli stati energetici degli elettroni, più n è 
elevato maggiore è il livello energetico e più lontano dal nucleo è l'elettrone. Rappresenta quindi 
l'energia e la dimensione dell'orbitale.

Il numero quantico secondario  l   detto anche azimutale  assume valori interi e va da 0  a   n-1.  
Definisce il momento angolare dell'elettrone e la forma dell'orbitale.

Il numero quantico magnetico  m  assume valori interi e va da   - l   a   + l   determina 
l'orientamento spaziale dell'orbitale.

Gli orbitali si distinguono in base al numero quantico secondario  l cioè :

s        l=0   sferico

p        l=1  bilobato

d        l=2   spesso a 4 lobi

f         l=3   complessa        

fig. 2.d.

Esempi:  n=1  l=0  m=0     orbitale   1 s      sferico 

                n=2  l=0    m=0     orbitale   2 s      sferico



                         l=1   m= +1,0,-1              tre orbiali   p  ….

fig 2.d.

Il principio di esclusione di Pauli afferma che in un atomo non possono esistere 2 elettroni 
con tutti e 4 i numeri quantici uguali;  perciò nello stesso orbitale possono esserci 2 soli 
elettroni   con spin diverso (antiparallelo).

Il principio va esteso a tutti i fermioni ,cioè particelle a spin semintero. Sono fermioni ad esempio 
anche i protoni ed i neutroni. Questo principio dice in sostanza che due fermioni identici ,cioè 
dello stesso tipo elettroni,protoni, ecc.) non possono trovarsi nello stesso stato individuale . Non 
possono essere descritti dalla stessa   ψ (x,t).

Questo principio spiega l'impenetrabilità dei corpi.  Infatti nulla vieterebbe essendo gli atomi 
praticamente vuoti che elettroni di un atomo entrino nello spazio di un altro atomo 
compenetrandosi. Potrei inserire un numero qualsivoglia alto di elettroni intorno ai nuclei., ma il 
principio di Pauli vieta questa compenetrazione.

3 -  LE    DUE   FENDITURE

3.a.   L'ESPERIMENTO   DELLE   DUE  FENDITURE

Una sorgente emette oggetti come  proiettili, fotoni e particelle microscopiche. Li emettte 



casualmente in ogni direzione . Questi incontrano un robusto ostacolo con due fenditure verticali. 
Successivamente quelli che passano vanno a finire su uno schermo dove sono presenti dei rivelatori 
di tali oggetti. (vedi figura).

Primo esperimento con i proiettili.

 I rivelatori contano i proiettili che arrivano e a seconda che sia aperta solo una fenditura  f  o 
entrambe aperte o entrambe chiuse può essere costruita una funzione che esprime la probabilità che 
i proiettili , lanciati uno alla volta colpiscano lo schermo in una posizione x.

Tale probabilità può essere calcolata  attraverso la relazione:

 Pf = Nproiettili in x condizione fenditura /  Nproiettili emessi

Se le fenditure chiuse  Pf = 0   .   Se una sola fenditura aperta i proiettili arrivano alla schermo e la 
Pf  avrà una forma di curva a campana centrata sulla fenditura aperta. Se entrambe sono aperte 
,poiche gli eventi di passaggio attraverso l'una o l'altra fenditura sono incompatibili si avra una 
curva di probabilità somma delle due ,cioè  Pf = P1f + P2f.  (vedi figura).

Secondo esperimento con la luce di   λ  confrontabile con la larghezza delle fenditure.

In questo caso il rivelatore misurerà l' intensità  I(x) dell'onda che colpisce lo schermo, che sarà 
proporzionale al quadrato dell'ampiezza del campo elettrico associato all'onda e.m.                     
Cioè  I(x) = k|E(x)|2.se  entrambe le fenditure sono chiuse alloa I(x) = 0. Se sono aperte o l'una o 
l'altra allora  I1(x) = k|E1(x)|²  o    I2(x) = k|E2(x)|². Se entrambe le fenditure sono aperte allora si 
avrà il fenomeno dell'interferenza dei raggi di luce ,quindi:

I1,2=k|E1(x) +E2(x)|² = I1(x) +   I2(x) + 2(√ I1(x)  I2(x)) cos δ dove δ è la differenza di fase fra l'onda 
che arriva dalla fenditura 2 e quella che arriva dalla 1  δ=k∆x, con ∆x differenza di cammino delle 
onde  e k  numero d'onda.L' intensità presenterà quindi una serie di massimi e minimi tipico delle 
figure di interferenza dovuti ad interfernze costruttive e distruttive. 



Terzo  esperimento con elettroni .

Gli elettroni emessi hanno velocità  v  in direzioni casuali ma hanno  λ  associata secondo la legge 
di De Broglie confrontabile con la larghezza della fenditura.

Viene inviato 1 elettrone alla volta e se viene aperta una sola fenditura il rivelatore evidenzierà una 
situazione analoga a quella dei proiettili. Se invece si aprono entrambe le fenditure allora 
comparirà,per unelevato numero di elettroni, la figura di interferenza come nel caso delle onde. 
Questo è un problema!

Nel caso delle onde il problema  dell'interferenza è ben noto. L'onda è presente nello spazio che 
precede le fenditure ,poi passa attraverso di esse e si somma sullo schermo con fasi diverse  
producendo frange di interferenza . Ma per le fenditure passa   1  solo elettrone alla volta, inoltre 
partono come particelle, arrivano come particelle e perchè quindi si comportano come onde? Tale 
comportamento non è spiegabile in termini classici. 

La MQ risolve il problema cosi' : l'elettrone è descritto da una funzione d' onda  ψ (x,t). Prima di 
partire dalla sorgente è descritto da una   ψ (x,t)  localizzata,pacchetto d'onde. Poi una volta 
emesso si propaga come un' onda. Quando la  ψ (x,t)  raggiunge le fenditure  si  modifica e dalle 
fenditure escono due funzioni d'onda   ψ1 (x,t)    e   ψ2 (x,t)   le quali si propagano nello spazio e 
giungono sullo schermo. Per calcolare la probabilità  P che l'elettrone giunga in una posizione  x 
dello schermo bisogna considerare il modulo quadro della funzione d'onda totale  e cioè :

P =  | ψ1   +  ψ2 | ²  = | ψ1 | ²  + |ψ2 | ² + 2| ψ1 || ψ2|cos δ

Questa è la relazione che ci fornisce la figura di interferenza simile a quella delle onde.Quindi la 
MQ risolve il problema!  

La questione è capire come ciò può succedere. Come fa l'elettrone a produrre interferenza  visto 
che parte ,passa e arriva sullo schermo   1  alla volta?  Da dove passa?

Inseriamo una sorgente di luce vicino alle fenditure . I fotoni incontreranno l'elettrone ,verranno 
diffusi da esso e si osserverà un lampo di luce ,allora sapremo da dove l'elettrone è passato. Ma in 
questo caso sparisce la figura di interferenza.  Questo succede quando illuminiamo gli elettroni con 
luce di  impulso p elevato e ,per la legge di De Boglie, di bassa lunghezza d'onda λ. In particolare 
una  λ minore della larghezza della fenditura. Se invece illuminiamo gli elettroni con luce di basso  
p e alta λ maggiore della larghezza della fenditura non vedremo dove passa l'elettrone, in questo 
caso vedremo la figura di interferenza. . Ciò a seguito del potere risolutivo che non permette di 
distinguere (mettere a fuoco) due oggetti  che distano tra loro meno della lunghezza d'onda della 
luce che li colpisce.

Quindi abbiamo due possibilità:

a)  Rinunciamo a sapere dove passano gli elettroni  ed allora essi si comportano come onde e 
vediamo l'interferenza.

b)  Riusciamo a vedere dove passano gli elettroni e perdiamo la figura di interferenza. Si 



comportano come proiettili. Basta solo l'intenzione di vedere ,non serve vederli.

L'interpretazione è questa:  se p del fotone è piccolo (grande  λ) , lo stato dell'elettrone viene poco 
disturbato e di conseguenza la sua funzione d'onda presso la fenditura illuminata cambia pochissimo
e potrà interferire con quella che passa per l'altra fenditura. Se p  è grande ( piccola λ) invece lo 
stato dell'elettrone  si altera al punto che la sua funzione d'onda non potrà interferire con l'altra.

Questa è la versione del principio di indeterminazione di Heisenberg  “ a disturbo”. 

Se conosciamo bene la posizione ,la velocità sarà molto indeterminata (nessuna interferenza),se 
invece  non vediamo  da dove è passato l'elettrone, avremo una buona determinazione  della 
velocità  ( interferenza).

A questo punto il problema è: l'elettrone è un'onda o una particella? Da dove passa quando poi 
arriva sullo schermo? 

Non può essere passato o dalla fenditura  1 o dalla fenditura  2 perchè si comporterebbe come un 
proiettile (somma delle probabilità).

Non può passare,se particella, contemporaneamente  da 1  e  da 2  poiche non si dimezza è 
elementare.

Ne da 1 ne da 2 ? No, perchè se chiudo le fenditure non vedo elettroni sullo schermo.

Se vedo interferenza vuol dire che qualcosa è passato da 1 e da 2.

Il fatto è che non ha senso parlare di elettrone quando non lo osserviamo.

Per noi l'elettrone è una particella localizzata, in realtà esso è un oggetto quantistico che è descritto 
da una funzione d'onda ψ (x,t).  In certi istanti è descritto da grandezze tipiche della meccanica 
classica in altri  dalla sua ψ (x,t) ma non possiede alcune proprietà classiche ben determinate. 
(versione di Heisenberg 1930) fino a quando non interagisce con oggetti esterni.

La MQ cosi' lo descrive nell'esperimento delle fenditure di larghezza L: l'elettrone è descritto da una
funzione d'onda localizzata solo all'inizio, prima di essere emesso , ed alla fine quando arriva sullo 
schermo. In questi due istanti è particella e può essere  descritto dalle grandezze tipiche della fisica 
classica. Quando è in volo e non viene rilevato, è descritto da una funzione d'onda non localizzata.

Descriviamo il suo stato dalla sorgente allo schermo.

S  (sorgente )     →      P  (particella)

Spazio tra S e F (fenditure)   →   ψ (x,y,t)

Sulle fenditure  l'onda si divide  per diffrazione (L ≤ λ) →   ψ1 (x1,y1,t)  ;  ψ2 (x2,y2,t)

Nello spazio alla destra delle fenditure si ha una funzione d'onda che è la somma dell funzioni 
d'onda uscite dalle due fenditure   →   ψ (x,y,t) = ψ1 (x,y,t)  +  ψ2 (x,y,t)

In ogni punto dello schermo la funzione d'onda è data dalla somma delle due                     →  
→ ψ = ψ1  +  ψ2   e la probabilità   dP di rilevare l'elettrone in un intervallo  dy è  :

 dP = | ψ |² dy = | ψ1  +  ψ2 |² dy

La funzione d'onda collassa e l'elettrone si trova con certezza (sempre sottointendendo 
Heisemberg) in un punto qualunque dello schermo   (x,y,t) ,  solo che quella posizione ha una  
probabilità  P(y) di essere trovata. Quindi la sua posizione sullo schermo non è prevedibile con
certezza prima della misura ma solo con probabilità P(y).



3.b. DUALISMO   ONDA   CORPUSCOLO

Come si è visto una particella di massa   m  e quantità di moto  p può essere descritta da una 
funzione d'onda  che è soluzione dell'equazione di Schrodinger ed ha la forma di una combinazione 
lineare di onde piane dove ogni onda ha una  lunghezza d'onda  λ = h/p. 

Se la particella interagisce con un qualunque oggetto fisico avremo il collasso della funzione d'onda
che da estesa diverrà localizzata ed assumerà una posizione ed una velocità in accordo con il 
principio di indeterminazione di Heisemberg. In questa situazione potremo parlare di una particella 
localizzata e classica.

Analogamente potremo descrivere il comportamento del fotone che sarà un campo elettromagnetico
composto da un campo elettrico ed un campo magnetico oppure da una particella di massa m=0 e 
spin 1, energia E = hf,  p= E/c ( quanto della forza  e.m.) che puo interagire con un oggetto 
scambiando energia,ecc. (corpo nero ,effetto fotelettrico). Anche il fotone può essere descritto da 
una equazione di Schrodiger estesa a particelle di massa nulla.

 

4 -  COME  UTILIZZARE LA FUNZIONE D'ONDA  ,  IL GATTO DI

 SCHRODINGER , IL TUNNELING  QUANTISTICO.   

4.a.    COME  UTILIZZARE  LA  FUNZIONE  D'ONDA: MISURE SUL SISTEMA FISICO. 

Se il verificarsi di un evento ha  due  modalità  1 e 2 indipendenti  ciascuno descritta dalle funzioni 
d'onda  ψ1  e  ψ2   allora il sistema viene descritto da una funzione d'onda totale   ψ  TOT =  ψ1  +  ψ2   
dove  Ptot  (r,t) =  | ψ  TOT|²  fornisce la probabilità che l'evento si verifichi. Questo procedimento è 
analogo a quello che si ha per le onde ad es. onde e.m. In tal caso   I (x) è proporzionale al quadrato 
del cmpo elettrico   E(x)  cioè   I (x) = k E(x)². 

Itot=k|A1(x) +A2(x)|² = I1(x) +   I2(x) + 2(√ I1(x)  I2(x)) cos δ dove δ è la differenza di fase fra l'onda 
1 e l'onda 2.  Il punto importante è il termine di interferenza che è dato da  2(√ I1(x)  I2(x)) cos δ .

Nel caso di oggetti puntiformi localizzati ( ad es. proiettili) questo termine  non compare, nel caso 
delle onde  compare e può essere positivo,negativo o nullo. Tale termine nel caso delle onde 
dipende dalla differenza di fase   δ , cioè dalla differenza di cammino  Δx  percorso per arrivare in 
un certo punto (ad es, dello schermo),   δ = 2π  Δx / λ.



Vediamo qualche esempio  con  I1(x) = I2(x) = I   :  Δx  = 0         δ  = 0         cos δ = 1    Itot = 4 I

Δx  =  λ/4     δ  = 900ͦ       cos δ = 0    Itot = 2 I

Δx  =  λ/2     δ  = 1800ͦ      cos δ = -1  Itot = 0

4.b.   IL  PRINCIPIO  DI  SOVRAPPOSIZIONE  DELLE  ONDE. 

Un sistema che ha come soluzioni due onde indipendenti E1 (x,t)  ed  E 2 (x,t)  allora anche  E(x,t) 
= a E1 +b E2 sarà soluzione del sistema.. Questa è una proprietà delle equazioni che descrivono il 
sistema ed in particolare la loro linearità. Ad esempio una corda che due modi di vibrazione, 
caratterizzati da ampiezze e frequenze diverse ,potrà vibrare anche in un modo che è combinazione 
lineare dei due.

Questo  principio si può applicare anche alle funzioni d'onda che descrivono il sistema quantistico. 
Quindi se ho un sistema descritto da due funzioni d'onda  ψ1  e  ψ2 corrispondenti a stati 
indipendenti di un sistema allora anche la funzione  ψ   =  a ψ1  + b ψ2   combinazione lineare di  ψ1  
e  ψ2  potrà descrivere il sistema ,dove a e b sono coefficienti complessi. Cioè tale stato 
combinazione lineare potrà esistere. Tale caratteristica non si trova nella fisica classica.

Questa proprietà è caratteristica di tutti i sistemi descritti da onde sia nella fisica classica ( suono) 
che dalle funzioni d'onda della MQ.

4.c.   DECOMPOSIZIONE  SPETTRALE  E LUCE  POLARIZZATA.

Polarizzazione  della  luce.

Un raggio di luce si dice polarizzato quando il campo elettrico  E ha una direzione di oscillazione ei
che non cambia nel tempo. Un filtro polarizzatore è un elemento fisico ,generalmente piano, 
caratterzato da un asse di polarizzazione identificato dal versore ep che seleziona la luce incidente e
la fa passare tutta, niente o in parte. In particolare se ei = ep la luce passa tutta  Eout = Ein,       se 
ei ┴  ep   ,Eout = 0. Nella figura sottostante un'onda viene fermata ( quella sull'asse orizzontale), 
l'altra procede.

Nella figura si vede un polarizzatore il cui piano di polarizzazione è parallelo ad una componente 
del campo e.m. ,quella verticale , quindi la luce passa tutta. La componente del campo e.m. 
perpendicolare al piano di polarizzazione del filtro viene invece fermata. Cosa succede se il piano di
polarizzazione del filtro forma un angolo θ  con la polarizzazione del campo elettrico? (Si assume 
che E abbia polarizzazione verticale). Si avrà che      Eout = Ein cos θ  e  Iout = Iin cos² θ  dove I è
l'intensità dell'onda. Quindi il campo in uscita sarà più piccolo di quello in ingresso ed avrà 
polarizzazione  ep. Il filtro cambierà sia l'intensità della luce che la direzione.



Quindi se mandiamo molta luce (tanti fotoni  N) al polarizzatore  se  θ =45º allora Iout = Iin/2 e 
cioè N/2 fotoni passeranno, N/2 non passeranno.  Ma cosa succede se mando un fotone alla 
volta?

4.d.   UN  FOTONE  ED  UN POLARIZZATORE .

Facciamo un esperimento:  un polarizzatore ha una polarizzazione  lungo l'asse y   ep = y. Un 
fotone che arriva o passa o non passa,  questi sono i risultati di una misura gli autovalori.In 
corrispondenza a tali  autovalori avremo rispettivamenti gli stati per il fotone  ei = ep = y  ed      
ei ┴  ep = y . Tali stati si chiamano autostati a cui corrisponde uno stato certo dell'interazione che il 
sistema ha con lo strumento di misura.

Quindi se il sistema è in un autostato sapremo con certezza il risultato della misura  autovalore 
altrimenti possiamo solo calcolare la probabilità di avere un certo risultato. A tal fine 
supponiamo di avere in ingresso un fotone con polarizzazione ei che forma un angolo θ   con  ep . 
In tal caso possiamo scomporre il vettore  ei  lungo gli assi z e y ed otteniamo :                 
ei = ei cos θ + ei sin θ . La teoria prevede che la probabilità di ottenere un certo risultato (deve 
essere uno degli autovalori o passa o non passa) è proporzionale al modulo quadro del coefficiente 
del rispettivo autostato, quindi se  ep = y  la probabilità di ottenere che passi è  cos² θ . Nel caso che
θ =45º allora  essa è ½  cioè passa 1 fotone ogni 2. Questo perchè la somma delle probabilità deve 
fare 1  che è la certezza di un risultato ,o passa o non passa. Infatti  cos² θ + sin ² θ = 1.

Il fotone che passa assume una polarizzazione  ep, la funzione d'onda collassa bruscamente da         
ei   → ep, la misura modifica il sistema in esame e non è solo disturbo casuale.

In generale dato un sistema descritto da una funzione d'onda   ψ (r,t) ,volendo sapere cosa succede 
se interagisce con un sistema esterno (strumento di misura), devo scrivere il sistema fisico di 
partenza scomponendolo in tutti i possibili risultati dovuti all'interazione con lo strumento.

Prima della misura    ψ (r,t) = aψa (r) +b ψ b(r) +...  avremo   |a |² la probabilità di ottenere ψa (r) ,  

|b |² la probabilità di ottenere  ψ b(r) e cosi' avanti. Dopo la misura la funzione d'onda collassa ed il 
nuovo stato sarà  ψ' (r,t) = ψa (r) se ho ottenuto ψa (r).

Vedi appendice A4

4.e.   IL  GATTO  DI  SCHRODINGER.

Il gatto di Schrodinger è un esperimento ideale (mentale) che il fisico discute in un suo articolo del 
1935, quando applica il principio di sovrapposizione delle funzioni d'onda ed il formalismo 
quantistico ad un sistema macroscopico. Egli stesso lo definisce un esempio “ridicolo” che nasce 
dalla  generalizzazione da sistema microscopico  a sistema macroscopico. 

Ecco l'esperimento: un gatto viene chiuso in una scatola. All'interno c'è un martello comandato da 
un rilevatore di materiale radioattivo ,una sorgente di materiale radioattivo ed una fiala di gas 
venefico. Quando una particella radioattiva colpisce il rilevatore questo aziona il martello che 
rompe la fiala ed il gas uccide il gatto. La probabilità di decadimento è del 50% ogni ora .

Dopo un'ora come sarà la sorgente,come la fiala,come il gatto?

Dopo un'ora il sistema sarà descritto da una funzione d'onda dato dalla sovrapposizione delle due 



funzioni d'onda che esprimono le due possibilità:                                                                                  

ψ =  1/√2 ψ1  +  1/√2 ψ 2  = 1/√2 ψ (vivo)  + 1/√2  ψ  (morto)        1/√2   poiché  ½ è la relativa 
probabilità

Dopo un'ora potremmo avere :  materiale decaduto,fiala rotta    → gatto morto  ψ =  ψ1 
                                   materiale non decaduto,fiala non rotta    → gatto vivo  ψ =  ψ2 

Il sistema collasserebbe in uno dei due stati solo all'apertura della scatola, come fossi io a 
determinare se il gatto sia vivo o morto.  La cosa può apparire ridicola.

Vediamo la soluzione:

Un sistema macroscopico ,ad esempio avente una ben determinata temperatura è in continuo 
scambio termico con l'ambiente ed  è quindi “osservato” da miliardi di fotoni al secondo. Le sue 
molecole interagisco tra di loro miliardi di volte al secondo e sono come “ osservazioni “ fatte sui 
singoli atomi del sistema. Quindi la funzione d'onda che descrive lo stato del gatto collasserà in 
qualche miliardesimo di secondo, decoerenza quantistica. Quindi il gatto è in uno stato ben 
definito e cioè prima  vivo e poi o vivo o morto. Il gatto non è un sistema quantistico bensi' 
classico.

4.f.   IL   TUNNELLING   QUANTISTICO.

Questo è un effetto che non ha riscontro in meccanica classica ma è tipico della MQ. In meccanica 
classica una massa sottoposta alla sola forza di gravità potrà superare una quota  h  ,rappresentata da
un ostacolo ,una barriera , solo se la sua energia cinetica sarà maggiore o uguale alla energia 
potenziale legata alla quota:

½ mv²  ≥  mgh                    da cui     v ≥  √2gh.

La MQ   prevede che  anche se la particella non ha l'energia cinetica sufficiente ad oltrepassare la 
barriera  c'è una certa probabilità che la particella si trovi dall'altra parte della barriera ed una certa 
probabilità che rimbalzi all'indietro. Questa probabilità di “superamento “ della barriera viene 
calcolata in base ad una soluzione dell'equazione di Schrodinger. Questo è  l' effetto tunnel. In 
pratica una particella che si trova a sinistra della barriera ,la urta e potrà trovarsi alla sua destra. 
(vedi figura 4.a.sottostante) ed appendice A5.

Sembra incredibile ma è un effetto reale ,la fusione nucleare nel Sole in quanto l'alta temperatura 
non permette sempre di vincere la repulsione coulombiana, in molti componenti elettronici presenti 
in cellulari, tv,telecomandi avviene proprio questo. Può avvenire anche a livello macroscopico? In 
questo caso la probabilità che avvenga è praticamente uguale a zero. Il fenomeno riguarda il mondo 
microscopico.

Una semplice spiegazione del fenomeno è questa: la funzione d'onda associata alla particella può 
essere ricavata (  ad esempio una particella in una buca) risolvendo l'equazione di Schrodinger. 
Andando ad analizzare queste soluzioni si vede che la funzione d'onda associata è non nulla 
anche fuori della buca e quindi esiste una probabilità non nulla di trovare la particella fuori 
della buca. (vedi figura 4.b.sottostante)

Perchè questo è un fenomeno che non avviene nel mondo macroscopico?  Facciamo qualche 
calcolo: pallina con massa di 10 -3    kg  e velocità di 1 m/s.  La lunghezza d'onda λ associata 
( legge di De broglie) e di 6 10 -31   m, quindi la funzione d'onda va praticamente a zero a circa  soli 
10 -30  m  fuori dal bordo della buca, cioè non esce dalla buca, quindi ogni effetto quantistico non è 



osservabile perchè troppo piccolo. Su scala atomica gli effetti quantistici diventano importanti

L'effetto tunnel è responsabile della radioattività α (molecole di elio) da parte dei nuclei pesanti, 
Uranio e Polonio instabili, in quanto tali nuclei possono sfuggire al campo di forze che le vincola 
anche se hanno una velocità di fuga minore di quella prevista dalla fisica classica.

Fig.4.a.

Fig 4.b.

5 -  L'ARTICOLO   DI  EINSTEIN-PODOLSKY   E  ROSEN,   EPR. 
INCOMPLETEZZA   DELLA   MQ.

Il  25 marzo 1935 ,Einstein, Podolsky e Rosen pubblicarono un articolo dal titolo “ La descrizione 
della realtà data dalla MQ puo' considerarsi completa?”

Brevemente il senso è questo:

La MQ afferma che la descrizione della realtà avviene tramite la funzione d'onda ,capace di 
contenere tutta l'informazione che si può avere su di un sistema.

Attraverso un esperimento mentale su di un particolare sistema  EPR dimostrano che la 
funzione d'onda non descrive completamente le proprietà del sistema.

Quindi nella descrizione del sistema manca qualcosa che la MQ non può descrivere ,quindi è 
incompleta.

Tutto ciò nasce dalla profonda convinzione di Einstein che la probabilità tipica della MQ sia di tipo 
epistemico , cioè dovuta alla nostra incapacità di descrivere alcuni aspetti del reale,e non 
connaturata, intriseca alla  teoria. Prima o poi si sarebbe giunti ad una teoria causale,” ...il grande 
vecchio non goca a dadi...”.

Una soluzione a questo problema è stata trovata appena nel 1982 confermando la completezza
della MQ stravolgendo ulteriormente la nostra idea di realtà

Per poter spiegare in modo sufficientemente corretto l'esperimento EPR è opportuno impadronirsi di
qualche ulteriore concetto e strumento operativo.



5.a.   LA   NOTAZIONE  DI  DIRAC.

Consideriamo un sistema descritto da una funzione d'onda    ψ (r,t)  che rappresenta un generico 
stato ψ  ottenuto da una combinazione lineare di due stati   ψ1  e  ψ2   ognuno dei quali rappresenta 
uno stato diverso ,ad esempio  ψ1 = V  e   ψ2  = O cioè fotoni con polarizzazione verticale ed 
orizzontale che hanno il 100% di probabilità di passare rispettivamente attraverso un filtro con 
polarizzazione verticale ed orizzontale.

 ψ   =  a ψ1  + b ψ2         dove        |a |² la probabilità di ottenere ψ1  e  |b |² la probabilità di ottenere  ψ 2

La notazione di Dirac usa il simbolo  |...  >  per definire lo stato di un sistema. Quindi la relazione 
precedente  può essere scritta  cosi'    |ψ  > =  a |ψ 1 >  + b  |ψ 2 >.

 Inviamo dei fotoni ad un polarizzatore. Nel caso il fotone abbia una polarizzazione a  45º si può 
scomporre lo stato in due direzioni ortogonali (V,O) e scrivere :      

   |ψ  > = |  45º >  =  1/√2|V >  + 1/√2|O >.  Tale fotone ha il 50% di probabilità di passare attraverso 
il  filtro se ha polarizzazione  verticale od  orizzontale  ( 1/√2) ² = ½ , mentre ha il 100% di passare 
se  ha polarizzazione   a  45º     ( ½+ ½) .

5.b.    L'ESPERIMENTO   EPR.

5.b1.  STATI   FATTORIZZATI.

Consideriamo il seguente sistema di assi , V; O, 45º, 135 º.

135 V 45                Rappresentano la polarizzazione di fotoni e di 

polarizzatori.

O

Una sorgente S invia due fotoni 1 e 2 indipendenti verso due polarizzatori uno con polarizzazione 
verticale  V uno orizzontale  O. Gli stati dei due fotoni possono essere cosi' rappresentati   :

 |ψ1  > = |1,V >   e   |ψ2  > = |2,O >    lo stato totale sarà ,data l'indipendenza dei due fotoni,                 
|ψ   > = |1,V > * |2,O >     5.b1)  .   

Il polarizzatore che analizza il fotone 2 resta polarizzato O, mentre quello che analizza il fotone 1 
cambia polarizzazione da V ad O a  45º.

In definitiva il fotone  2  passa sempre con una probabilità del 100%, il fotone  1  può passare con 
probabilità del 100% , non passare o passare con probabilità  del  50%. Il che significa che su cento 
misure si vede che  in media ne passano 50.

Scomponiamo lo stato |1,V >  secondo le direzioni di 45º e 135 º. Otteniamo quindi lo stato              



|  1,V >  =  1/√2|1,45  >  + 1/√2|1,135 >  ed inseriamo tale stato nella 5.b1.     Otteniamo:

|ψ   > = ( 1/√2|1,45  >  + 1/√2|1,135 >) * |2,O >    

Facciamo ora un test con il polarizzatore a 45º sul fotone 1. Avremo che il fotone passerà il test con 
probabilità del 50% .( 1/√2)² = ½, questo prima della misura.  Dopo la misura ,se passa con 
probabilità del 50%, all'uscita del polarizzatore la  ψ  collassa ed il fotone acquisterà con 
certezza la polarizzazione a  45º e la funzione d'onda sarà diventata  |ψ   > = |1,45  >  * |2,O >  .

5.b2.  STATI   ENTANGLED.

Consideriamo due fotoni imdipendenti 1 e 2 fattorizzati, polarizzati  V  e polarizzati  O.

Posso allora creare gli stati : | Φ  > = |1,V > * |2,V >  e  | Λ  > = |1,O > * |2,O >. Creiamo ora lo stato 
somma dei due e cioè : | Ψ  > =  1/√2|1,V > * |2,V >  +   1/√2|1,O > * |2,O >.  5.b.2)

Tale stato viene chiamato  entangled  ,in italiano interlacciato ed ha delle particolari proprietà. Se 
facessimo un test di polarizzazione verticale od orizzontale sui fotoni 1 o 2 avremmo sempre il 50%
di probabilità che i fotoni passino il test. Volendo fare un test sullo stato  | Ψ  > con un polarizzatore 
a  45º o a  135 º otterremo un risultato analogo alla 5.b.2., e quindi avremo sempre il 50% di 
probabilità che i fotoni passino il test. Si puo' verificare che questo avviene sempre per ogni 
direzione del polarizzatore purchè si tratti di direzioni che formano tra loro angoli di 90.º

Quindi ognuno dei due fotoni ha sempre una probabilità del 50% di passare il test lungo una 
qualsiasi direzione arbitraria.

Il risultato ottenuto per qualunque test è lo stesso per entrambi i fotoni.

Se facciamo un test di polarizzazione ad es. sul fotone 1 lungo una direzione qualunque N e se 
supponiamo che il fotone passi il test e questo avviene con probabilità del 50%,  avremo in uscita lo
stato  :            |Ψ   > = |1,N > * |2,N >  , quindi dopo la misura sul fotone  1  si ha che il fotone  2  ha 
acquistato la polarizzazione  N con probabilità del 100%.

In definitiva il punto essenziale dello stato entangled è questo: prima della misura possiamo 
solo dire solo che i due fotoni hanno il 50% di probabilità di passare il test  secondo una direzione 
N.. Dopo una  misura secondo N avremo il 100% di passare il test per entrambi i fotoni.

5.b4.   LA  DIMOSTRAZIONE DI  EINSTEIN, PODOLSKY  E  ROSEN 
DELL'INCOMPLETEZZA   DELLA  MQ.

Partiamo con due definizioni: 

Realismo:  se ,senza disturbare un sistema è possibile prevedere con certezza il risultato di una 
misura di un osservabile allora vuol dire che il sistema possiede oggettivamente la proprietà 
relativa , cioè indipendentemente dall'osservatore che la fa o dal fatto che la misura sia fatta o no.

Località  einsteiniana: gli elementi di realtà posseduti oggettivamente da un sistema non possono 
essere influenzati istantaneamente a distanza.

La dimostrazione cosi' si articola: partiamo da uno stato entangled per due fotoni:

1-      | Ψ (t) > =  1/√2|1,V > * |2,V >  +   1/√2|1,O > * |2,O >



2-    Facciamo viaggiare i due fotoni per un tempo  t*;  il fotone 1  si trovarà in A, il fotone  2  in 
B,la distanza  D tra  A e B è tale che non può essere coperta dalla luce in un intervallo di tempo  dt.

3-    Eseguiamo al tempo  t*  in A una misura sul fotone  1  con un polarizzatore verticale  V, se il 
fotone passa il test allora dopo un tempo  dt (tempo di esecuzione della misura) lo stato del sistema 
sarà  :  |Ψ (t*+ dt)  > = |1,V> * |2,V > 

4-    Quindi l'osservatore in A solidale con il polarizzatore potrà prevedere con certezza, senza 
disturbarlo, che il fotone  2  avrà una polarizzazione verticale  V ,se facesse una misura in B al 
tempo  t* + dt.

5-     Quindi il fotone  2  ha un elemento di realtà, cioè possiede oggettivamente  la polarizzazione  
V  che non aveva prima del tempo t*

6-     Ma per l'ipotesi di località l'informazione della polarizzazione del fotone  1  non può essere 
arrivata in B nel tempo  dt in quanto  dt <  D/c, quindi il fotone  2  possedeva tale proprietà prima 
della misura fatta all'istante  t* ,indipendentemente dalla misura fatta sul fotone  1.

7-    Quindi la MQ non essendo in grado di descrivere tale realtà è incompleta.

6 -  LE   DISUGUAGLIANZE  DI   BELL. 

6.a.   LE   DISUGUAGLIANZE  DI  BELL.

Nel  1964 un fisico irlandese  J.S.Bell  scrisse un articolo su EPR. Propone un esperimento mentale 
non tanto per confermare o falsificare la MQ, ma invece per affrontare il problema della località nei
fenomeni naturali. Bell propone delle disuguaglianze che si sarebbero verificate solo nell'ipotesi 
della validità del concetto di località. Misure sperimentali di tali disuguaglianze vennero eseguite 
nel 1982 da Aspect,Granger & Roger.

Il risultato sperimentale è quello previsto dalla MQ e contraddice le disuguaglianze di Bell. 
L'argomentazione  EPR era corretta ma non le conclusioni in quanto l'ipotesi iniziale era errata. 
Non è la MQ ad essere incompleta bensi' è l'ipotesi di località a dover essere cambiata. 
L'entanglement  rende possibili correlazioni superluminali non mediati, immediati, non mitigati. 
Non viene però violata la teoria della relatività ristretta in quanto segnali superluminali non 
sono permessi.

Si da ora un esempio dell'esperimento mentale di Bell e delle misure di Aspect.

Supponiamo di avere una sorgente che crea coppie di fotoni entangled  B  e  G.

| Ψ  > =  1/√2|B,α > * |G,α >  +   1/√2|B,α+90º > * |G,α+90º >   dove  α ed  α+90º

  rappresentano assi di polarizzazione ortogonali tra loro. Questo  si può fare facilmente con un 
cristallo non lineare in un laboratorio di ottica quantistica. I due fotoni che viaggiano in direzioni 
opposte vengono inviati verso due cristalli di calcite ognuno con asse di polarizzazione  V. Il 
cristallo di calcite sostituisce i classici polarizzatori. Vedi appendice A6.



Se inviamo un fotone al cristallo da esso esce sempre un fotone che, a seconda della polarizzazione,
viene registrato come  UP (polarizzazione orizzontale)  o  DOWN (polarizzazione verticale) da 
due contatori  di fotoni  U e D. Le misure vengono fatte inviando N coppie di fotoni entangled B e 
G ai cristalli. Parte e arriva una coppia per volta. I contatori eseguono poi i conteggi U e D  che  
vengono registrati.

Le configurazioni utilizzate nell'esperimento sono tre. In particolare gli angoli dell'asse di 
riferimento del cristallo rispetto alla verticale che è l'asse del laboratorio. Vediamo un esempio 
tipico dell'esperimento. 

1- per un singolo fotone  B o G ,sia P (θ) la  polarizzazione dell'asse del cristallo dove θ è l'angolo 
tra l'asse del cristallo e l'asse del laboratorio. Per un qualunque angolo  θ si ottiene il 50% di 
probabilità di avere  U o D. Una sequenza tipo sarà:    UUUDDUDDDUDUDUUUDDUD.

2- la polarizzazione accoppiata  PA (θ) per la coppia di fotoni B e G. L'angolo θ è lo stesso per i 
due fotoni  θB =  θG , situazione analoga all' EPR. Anche in questo caso ho il 50% di probabilità di 
avere  U o D. In questo caso però le sequenze sono uguali:   
UUUDDUUDDDUDUDUUDD per il fotone B

UUUDDUUDDDUDUDUUDD per il fotone G

3- la polarizzazione correlata  PC (θ) dove gli angoli di B e G sono diversi   θ =  θG  -  θB . Le 
sequenze saranno diverse per ogni conteggio.

Per il fotone B : UUDU DUDU DDUD UDDD UUDU  N fotoni misurati.

Per il fotone G : UUDD DUDD DUUD UDDU UDDU  N fotoni misurati.

                           mmm   mmm    m  mm mmm   m   mm      Nm = 15

                                    e            e     e                 e    e             Ne = 5 

dove abbiamo chiamato m (match) le sequenze uguali ed e (errori ) quelle diverse.

Quindi si contano   PC (θ) = Nm/N     ed    E( θ) = Ne/N

Ecco i possibili risultati per alcuni angoli particolari:

 θ = 0          PC (θ) = 1         E( θ) = 0      tutti i valori sono uguali, non ci sono errori.

 θ = 90º       PC (θ) = 0         E( θ) = 1      tutti i valori sono diversi , 100% di errori.

 0º <  θ <  90º      0 < E( θ) < 1    scelgo un valore  E = ¼  (un errore su 4) ,sperimentalmente si 
trova un angolo che corrisponde a 30º.

La misura di Bell:   θB =  30º,  θG = - 30º,   θ = 60º.  Se vale la località allora la misura di uno 
non può influenzare quella dell'altro in quanto le misure sono quasi istantanee. Quindi E(60º) 
= 2 ¼  = ½ = 50% ( somma di probabilità) .  Anzi risulta con una più attenta analisi   ≤ ½.

La previsione della MQ darebbe  sin² θ = ¾  , 75 %,  sin² θ in quanto la probabilità che passi 
un polarizzatore è cos²  θ e quindi che non passi sarà  1- cos²  θ =  sin² θ. 

Il risultato di Bell nasce dalla teoria della probabilità ,quello della MQ nasce dalla teoria.

Le misure su di un apparato sperimentale che riproduceva l'esperimento mentale di Bell sono state 
fatte nel 1981 (Aspect, Dalibard & Roger) con accortezze tecniche che evitavano ogni possibile 
influenza tra le misure.



I risultati furono i seguenti, in ottimo accordo:

Risultato sperimentale  :  E = 0,601 ± 0,020

Previsione della MQ :      E = 0,612

   Ulteriori  misure  (1998 Weihs):

Ipotesi di località (disuguaglianza di Bell)   ≤  2

Previsione MQ   =   2√2  ≈ 2,82

Risultato sperimentale  =  2,73 ± 0,02

Vennero eseguite altre misure con risultati analoghi.

Conclusione 1 : la realtà in determinate condizioni può essere non locale ,esistono interazioni 
non locali cioè immediate anche a grandi distanze ma solo per sistemi entangled.

Conclusione 2:  il risultato sperimentale è in accordo con le previsioni della MQ che è non 
locale. L'entangled rende possibili correlazioni superluminali, ma l'invio di tali segnali non è 
permesso. La teoria della relatività non viene violata!

6.b.   LA   VITA  IN  UN  SISTEMA  ENTANGLED.

Sorgono a questo punto domande del tipo : esistono nel mondo macroscopico vivente e non sistemi 
interlacciati? Sono gli esseri umani collegati dall'entangled? Molte sciocchezze sono state dette e 
scritte a riguardo.

Il fatto è che è praticamente impossibile che esistano sistemi macroscopici ,addirittura viventi 
interlacciati tra loro. Vediamo perchè.

Un sistema ,ad esempio di due fotoni, rimane in uno stato entangled fino a che non viene fatta una 
misura su uno di essi,questo determina istantaneamente la conoscenza della proprietà relativa a 
quella misura dell'altro fotone. A questo punto i due fotoni non sono più interlacciati ma diventano 
particelle libere indipendenti. Ora  due  fotoni entangled sono oggetti molto particolari ed hanno la 
possibilità muovendosi in una guida d'onda  di percorrere centinaia di chilometri in tempi 
brevissimi ,viaggiando alla velocità della luce ,rimanendo interlacciati cioè senza cambiare il loro 
stato iniziale .

Il problema è quello di mantenere la coerenza di un sistema interlacciato. Come si comporta un
sistema interlacciato se messo in contatto con l'ambiente tipicamente sottoposto a temperatura 
ambiente? Un tale sistema è in costante contatto termico con l'esterno e scambia costantemente 
energia con l'ambiente, quindi viene continuamente misurato ,osservato insomma interagisce! 
Questo distrugge l'eventuale interlacciamento del sistema . Lo stato di entangled è molto delicato ,si
perde in tempi brevissimi a maggior ragione se è  a temperatura ambiente. Qualcosa puo' accadere 
nel mantenimento dell'entangled a temperature vicino allo zero assoluto, -273 º C.                          
Vediamo un eperimento fatto nel 2009 (Poletto). Il sistema in questione è un qu-bit (vedremo in 
seguito di cosa si tratta)  che oscilla tra gli stati  0  e  1. Le sue dimensioni sono dell'ordine del 
micron e la temperatura vicinissima allo zero assoluto.( 0,5 K) . L'oscillazione varia tra 0 e 1 per
tempi brevissimi ,circa 1  nanosecondo, in questo tempo rimane quantistico. Poi al passare del 
tempo 5, 6 nanosecodi perde tali proprietà e diventa classico. 

Quindi avere sistemi macroscopici a temperatura ambiente interlacciati è praticamente 
impossibile, si potrebbero  avere tali sistemi intorno allo zero assoluto. Studi recenti mettono 
in luce una possibilità di coerenza ed interlacciamento in sistemi biologici microscopici a 
temperatura ambiente per tempi  brevissimi.



6.c.      CENNI  DI  CRITTOGRAFIA  QUANTISTICA.

Il problema è quello di mandare un messaggio ad un destinatario in modo tale che solo esso possa 
comprenderlo. Il messaggio prende il nome di testo in chiaro. Esso viene sottoposto ad un processo 
di cifratura che lo trasforma in un crittogramma.Il punto fodamentale è la chiave che permette di 
decifrare il crittogramma e riportarlo in chiaro. Il crittogramma viene inviato su di un canale di 
comunicazione (telefono,fax,...) che si chiama canale ordinario. Si deve però fare i conti con la 
possibilità che tale crittogramma venga intercettato da un esterno (spia,...) che cercherà di 
decrittarlo e porlo in chiaro. Il destinatario invece lo decifrerà conoscendo la chiave. Quindi appare
chiaro che la conoscenza della chiave da parte del mittente e del destinatario è il punto 
fondamentale per la trasmissione . Il fatto è che la comunicazione della chiave da parte del mittente 
deve seguire un canale di trasmissione assolutamente sicuro. Non staremo ora a descrivere metodi 
di cifratura che si sono succeduti nel tempo ma andremo quasi subito al nocciolo  della questione di 
come la MQ può risolvere brillantemente il problema.

Facciamo quindi prima un esempio. Si vuole prima provare che se due persone vogliono 
scambiarsi un messaggio che resti segreto tra loro e dispongono entrambi della stessa 
sequenza casuale di numeri , che rappresenterà la chiave, allora potranno trasmettersi un 
messaggio inviolabile.

Supponiamo che Giuseppe voglia trasmettere a Caterina il messaggio  “ Ti  amo “. Supponiamo 
inoltre che abbia trovato un modo per cifrarlo. Se il messaggio ha 10 cifre e Giuseppe dispone di 5 
numeri casuali di 2 cifre ,sommerà tali numeri alle cfre del messaggio a gruppi di 2 ed otterrà il 
crittogramma . Esempio  :    messaggio cfrato     2009011315

                                              numeri casuali        0634721203

                                             la somma darà         2643732518

Il destinatario sottrarrà la chiave in suo possesso da tale somma ed otterrà il messaggio 
cifrato. Si osserva che la conoscenza del crittogramma non contiene alcuna informazione sul testo 
in chiaro. Indovinare il testo in chiaro senza conoscere il crittogramma è altrettanto difficile che 
indovinarlo senza conoscerlo. I tentativi di intercettazione sono inutili.

Usando fotoni si ottiene un sistema inviolabile per crittografare.

Abbiamo una sorgente di fotoni che emette ad esempio 2 fotoni al secondo che si propagano in 
direzioni opposte verso il mittente Caterina e verso il ricevente Giuseppe. Lo stato della coppia sarà 
uno stato entangled del tipo:

| Ψ  > =  1/√2|1,V >  |2,V >  +   1/√2|1,O >  |2,O > = 1/√2|1,45  > |2,45  > + 1/√2|1,135 >|2,135 >)         
i due si sono accordati di fare misure di polarizzazione lungo  V  ed a 45º ma non sulla successione 
delle misure che ognuno farà a caso. Scriveranno  0  quando il fotone supera il test  ed  1  quando 
non lo supera. Le misure eseguite verranno annotate ( V o   45º). Alla fine disporranno di una 
tabella con gli esiti delle misure. Si ribadisce che gli esiti delle misure sono casuali.

Ora Caterina e Giuseppe annunciano pubblicamente la direzione scelta in ciascuna misura. Quindi 
eliminano dall'elenco dei loro risultati i casi in cui hanno eseguito misure lungo direzioni diverse 
salvando i rimanenti risultati.  Otterranno una stringa di 0 ed 1 uguale per entrambi e lunga circa la 
metà. ( notiamo che i risultati lungo la stessa direzione devono coincidere per la proprietà di 
entangled).

Il problema sembrerebbe risolto ,infatti essi dipongono di due sucessioni casuali ed identiche 
di 0 ed 1 ideale per una chiave!

Può essere che una eventuale spia possa essere entrata in possesso della chiave? Per non vanificare 



il loro lavoro devono poter escludere che qualcuno possa essersi impadronito di tale stringa o che 
qualcuno possa  aver truccato la sorgente facendola emettere ad esempio 3 fotoni in modo tale che 
dalle  misure sul terzo si possano dedurre i loro risultati.

A questo scopo i due espongono pubblicamente i loro risultati ad esempio nei numeri pari di misura.
Lo scopo è la verifica che coincidano ,quindi non ci siano state interferenze esterne. Ovviamente 
tali risultati sono noti e quindi non più utilizzabili; la stringa si riduce. Ora esiste un teorema di MQ 
che esprime il fatto che una qualunque interferenza esterna atta a scoprire la natura della stringa 
comporta che vadano perse le correlezioni tra gli esiti di Caterina e Giuseppe.

 Si può dimostrare che  l'evento che su 100 misure gli esiti risultino coincidenti in presenza 
dell'interferenza di una spia è dell'ordine di una volta su diecimila miliardi di casi. 

Questo comporta che Caterina e Giuseppe dispongono di stringhe casuali di cui nessuno ne è a
conoscenza! In pratica l'interferenza di una spia distrugge in modo estremamente evidente la 
coincidenza tra le misure.

Ora Caterina vorrà dire a Giuseppe che lo ama segretamente. Cosa farà? 

1) Scriverà il suo messaggio in chiaro e lo cifrerà in un modo anche semplice,ad esempio lettera e 
numero dell'alfabeto o meglio tutto in codice binario  AscII  di 0 e 1  .                                                

2) Sommerà a tale messaggio la stringa casuale senza riporto

3) Otterrà il crittogramma che trasmetterà sul canale pubblico.

Giuseppe ricevuto il crittogramma eseguira l'oprazione inversa ( crittogramma meno stringa) e 
scoprirà il messaggio. Di seguito alcune immagini di quanto spiegato. I due innamorati sono ora 
Alice e Bob.

In questo caso a differenza della crittografia classica il mittente ed il destinatario possono accorgersi
dei tentativi di intercettazione. Il difficile è mantenere la correlazione quantistica entangled  tra 
fotoni lontani. Recentemente si è arrivati ad una distanza di 20 km.



6.d.     I   COMPUTER   QUANTOMECCANICI.

Lo scopo di questo capitolo è quella di mostrare in qualche caso particolare come la MQ possa 
,almeno in linea di principio, produrre un salto di qualità riguardo alle operazioni base dei computer
e cioè quelle di immagazinare , manipolare informazioni e trasmetterle. In linea di principio in 
quanto la realizzazione pratica di tali dispositivi presenta ancora delle difficoltà ,anche se 
probabilmente nel giro di qualche anno tale progetto verrà realizzato.

L'idea dei computer quantistici nasce all'inizio degli anni  '80, quando la forte spinta a costruire 
componenti elettronici sempre più miniaturizzati (circuiti integrati), porta gli ingegneri a dover 
avere a che fare con pochi atomi. A questi livelli microscopici le leggi classiche  non forniscono una
corretta descrizione dei problemi ed è necessario ricorrere alla MQ. Dal punto di vista teorico si 
cimentò in merito il grande fisico  Richard P. Feynman del California Istitute of Technology nel 
1984,nobel nel 1965 per la QED. Negli ultimi dieci anni David Deutsch ha dato importantissimi 
contributi in merito.

La teoria dell'informazione è quella teoria matematica che tratta  della trasmissone ,dello stoccaggio
e dell'elaborazione dei dati. Riguardo i primi due aspetti Claude Shannon  ha fornito importanti 
contributi nel 1948, il problema dell'elaborazione è stato oggetto di sudi dal 1935 da parte del 
grande matematico britannico Alan Turing che con la sua analisi della macchina dette contributi 
fondamentali nel campo della logica formale. 

6.d.1   Bits   classici  e   bits  quantistici.

L'informazione è fisica e va quantificata ed incorporata in elementi fisici. L'elemento fondamentale 
è il  bit che rappresenta l'informazione corrispondente a due alternative possibili. Sta per binary 
digit e si fa riferimento al sistema binario fatto di 0 ed 1,. con bit indichiamo anche l'elemento 
fisico che lo contiene. Con il bit classico è possibile mandare solo due messaggi ,ad esempio lo 0 
potrebbe significare che Caterina potrà in contrare Giuseppe mentre l' 1 che ciò non è possibile. 
Giuseppe legge il codice e capisce. Per un sistema quantomeccanico non è cosi'.

Chiameremo i bit classici  (0)  ed  (1) , quelli quantistici   |0> ed  |1> . Nel caso quantistico , a 
seguito del principio di sovrapposizione, se un sistema può trovarsi sia  nello stato  |0> che  nello 
stato |1>  allora potrà trovarsi nello stato combinazione lineare dei due e cioè :                  |  

Ψ  > = a|0 > + b|1 >   con  a² + b² = 1 normalizzazione della probabiità.

Noi useremo una notazione già vista ma equivalente  : |Ψ  > = 1/√2 (|0 > + |1 >)     6.d.1



Come possiamo preparare un bit quantistico?

Si ricorre ai “quantum dots”. Si tratta di un singolo ione intrappolato tra atomi. Sia  |0> lo stato di 
più bassa energia. Colpito da una luce laser ,per un tempo  T , di frequenza opportuna compie una 
transizione nel più vicino stato eccitato  |1 >. tale stato può essere disfatto e con analoga procedura 
può ritornare alo stato  |0>. Il fatto interessante è che tale sistema viene colpito dalla luce laser per 
un tempo T/2  allora lo stato finale è proprio la sovrapposizione dei due stati! 

Quindi il qubit è realizzabile.

           
6.d.2.      Stoccaggio di numeri  e   bits  quantistici.

Supponiamo di voler immagazzinare in un gruppo di bits un numero in notazione binaria. 
Consideriamo numeri in notazione binaria che richiedono al massimo sei cifre.  Allora il numero 
binario  111001 = 57.  Infatti  111001 = 1*25 +1*24+ 1*23+ 0*22 +0*21 + 1*20 = 57. Nel caso 
classico utilizzeremo tutti e 6 i nostri bits (1)(1)(1)(0)(0)(1). 

Supponiamo ora di disporre i 6 bits quantistici nello stato di sovrapposizione  6.d.1. Avremo la 
seguente combinazione lineare di 64 stati ( 26  permutazione con ripetizione di 2 elementi a 
gruppi di 6):

|Π > = 1/8 (|000000 > + |000001 >+|000010 > +... +|100000 >+|100001 >+...+|111111 >)  

Il fatto stupefacente è che |Π >  contiene tuti i numeri da |000000 > a |111111 >  cioè da 0 a 63.

Quindi lo stesso numero di bits necessari per immagazinare a livello classico un numero di 6 
cifre binarie , ci consente di disporre potenzialmente di tutti i numeri con un masimo di 6 cifre
in notazione  binaria.

 6.d.3.    Complessità computazionale.

Vediamo subito un esempio : il problema del commesso viaggiatore. Il commesso deve far visita  a
N  clienti in una determinata regione. Il problema consiste nel determinare l'ordine di visita in 
modo da minimizzare la distanza percorsa. Quanti passi deve fare un computer per risolvere un 
problema di questo tipo? In questo caso la complessità è esponenziale ed i passi  P sono 10 N.. Ora  
se N = 50  , P=1050.  , cioè 1 seguito da 50 zeri!  Un siffatto problema non è risolvibile in tempi 
ragionevoli nemmeno dai più sofisticati calcolatori classici.

 Senza entrare in dettaglio utilizzando computer quantistici si è visto che problemi complessi (ad 
esempio  il problema della fattorizzazione di un numero primo di 129 cifre) richiedevano migliaia 
di computer operanti insieme per tempi di diversi mesi sono stati risolti  in tempi di qualche 
secondo!

 Malgrado ciò sul problema del commesso viaggiatore non è stato trovato ancora un algoritmo
risolutivo.



 CONCLUSIONI.

 Le conclusioni di questo lavoro riguardano principalmenet le sensazioni che ho avuto 
cimentandomi in questa attività. Gli argomenti inerenti la MQ sono complessi concettualmente oltre
che tecnicamente. All'Università avevo imparato la tecnica ,la matematica della meccanica 
quantistica ,ora che quelle cose sono ben che dimenticate e direi difficilmente raggiungibili, sento e 
capisco come  sotto quel mare di calcoli ci fossero argomenti  ben più sottili ,ben più coinvolgenti,  
ben più profondi . Per questo ho deciso ,non senza qualche riluttanza,qualche rifiuto in itinere di  
portare avanti il lavoro e possibilmente di presentarlo.  Quanto esposto fa riferimento a tre testi che 
ho messo nella bibliografia.

Il pubblico a cui è rivolto è un pubblico interessato e curioso, non sono necessarie particolari 
competenze di matematica o di fisica in quanto ho cercato di evitare questioni matematicamente 
complesse. Qualche esposizione tecnica con relativi calcoli è presente nelle appendici.

 Certo la curiosità e la pazienza sono fondamentali. La pazienza di non capire subito confidando di 
capire poi. In un mondo in cui l'informazione viaggia veloce non è semplice aspettare per capire ma
lo hanno fatto i grandi fisici di quegli anni tra frustazioni e rifiuti ma anche tra entusiasmi e 
speranze .

 Alcuni argomenti e principi : il principio di indeterminazione, il collasso della funzione d'onda , il 
concetto di probabilità intrinseco nella teoria,gli stati interlacciati (entangled), la non località della 
teoria pur nel rispetto della relatività ristretta vanno in contrasto non solo con la fisica classica ma 
anche con il senso comune a cui è difficile rinunciare. 

Un' avventura quindi nel mondo microscopico che tanto si differenzia dal nostro mondo ,quello di 
tutti i giorni, quello  macroscopico.
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